Study Highlights

Hypothesis: Biodebris in LVAD bend relief → external outflow graft compression

Design:
- Retrospective, single center
- Inc: LVAD + chest CTA (09-17)
- Measured degree of biodebris
- Different imaging criteria for HM2, HM3, HVAD

Results: n = 110
- Significant biodebris + graft narrowing
 - 15/93 HeartMate devices
 - 0/17 HVAD
- Outflow graft kinking
 - 4/93 HeartMate device
 - 0/17 HVAD

Central Figure

Bend Relief Analysis
- Biodebris at borders of outflow graft
- Luminal border within outflow graft defined by contrast edge
- HeartMate II:
 - Bend relief diameter 21 mm
 - Aggregate biodebris diameter >7 mm was further analyzed
- HeartMate 3:
 - Bend relief diameter 18 mm
 - Aggregate biodebris diameter >4 mm was further analyzed

Free Cannula Analysis
- Biodebris at borders of outflow graft
- Luminal border within outflow graft defined by contrast edge
- HeartMate models:
 - Aggregate biodebris diameter >10 mm or any outflow graft luminal narrowing to ≤14 mm was further analyzed
- HeartWare model:
 - Strain relief (no bend relief)
 - Aggregate biodebris diameter >4 mm or any outflow graft luminal narrowing to ≤10 mm was further analyzed

Reviewer’s Comments

Biodebris build up = under-recognized. ?? implications for HeartMate devices (HVAD: no fully encasing bend relief)

Limitations:
- Mostly HM2 (n=89)
- 5 CTAs excluded for poor quality → unclear criteria
- Selection bias; why did patients have CTAs?
- Different LVAD device designs → difficult to compare LVAD types
Objective: Validate echo-based HVAD protocol for estimating hemodynamic status

Methods:
- 35 HVAD patients (2014–2017)
- Correlated echo estimates with RHC

Results:
- Strong correlations between estimated and invasive pressures
 - RA ($r = 0.839$); LA ($r = 0.889$)
- Accurate for finding high pressures
 - RA (AUC = 0.94); LA (AUC = 0.91)
- High RAP correlated with:
 - High LAP
 - Death/hospitalization at 180d
- Hemodynamic profiles correlate with clinical risk

CENTRAL FIGURE: HVAD protocol

A

<table>
<thead>
<tr>
<th>eRAP<sub>IVC</sub></th>
<th>eRAP<sub>HVFF</sub></th>
<th>eRAP<sub>Right E/e'</sub></th>
<th>eRAP<sub>Right E/e'</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm Hg IVC > 21 mm without collapse</td>
<td>$V_s < V_o$ and HVFF < 45% or V_s reverse</td>
<td>> 8</td>
<td></td>
</tr>
<tr>
<td>15 mm Hg IVC > 21 mm with < 50% collapse</td>
<td>$V_s < V_o$ and HVFF < 55%</td>
<td>> 6</td>
<td></td>
</tr>
<tr>
<td>10 mm Hg IVC > 21 mm with > 50% collapse OR IVC ≤ 21 mm with < 50% collapse</td>
<td>$V_s < V_o$ and HVFF < 55%</td>
<td>> 4</td>
<td></td>
</tr>
<tr>
<td>5 mm Hg IVC ≤ 21 mm with ≥ 50% collapse</td>
<td>$V_s > V_o$</td>
<td>≤ 4</td>
<td></td>
</tr>
</tbody>
</table>

B

| eLAP_{E/A} | eLAP_{MDI} | eLAP_{septal E/e'} | eLAP_{MR} | eLAP_{MR} |
|-------------------|-------------------|----------------------|----------------------|
| 20 mm Hg Restrictive (DT < 125 ms) | < 1.5 | ≥ 20 | 4/+4/+ | |
| 15 mm Hg Restrictive (DT 125-160 ms) | < 2 | ≥ 15 | 3+/4/+ | |
| 10 mm Hg Pseudonormal | > 2 | ≥ 8 | 2+/4/+ | |
| 5 mm Hg Impaired relaxation | > 3 | < 8 | 1+/4/+ | |

Selected terms: eRAP, estimated right atrial pressure; HVFF, hepatic venous systolic filling fraction; eLAP, estimated left atrial pressure; MDI, mitral deceleration index

REVIEWER’S COMMENTS

First prospective study of non-invasive hemodynamic evaluation in HVADs

LVAD echo imaging quality often limited → use of Doppler techniques may be of value

Normal RA and LA filling pressures linked with better outcomes

Limitations:
- Single center
- Small derivation cohort, n=5
- Small validation cohort, n=35
- Generalizability limited (experience in image acquisition variable)

STUDY HIGHLIGHTS

Background:
- ↑ # of BTT-LVAD to OHT
- BTT-LVAD may assoc. w/ ↓post-OHT outcomes (small studies)
- No difference in listing status between BTT-LVAD vs. Med-Rx patients

Design:
- UNOS database query
- Compare outcomes of BTT-LVAD vs. Med-Rx patients
- Propensity-matching analysis

CENTRAL FIGURE

Risk factors: age>60, GFR<40, BMI>30
Low: 0 risk factor. Medium: 1. High: ≥2

Survival: high risk BTT << high risk Med-Rx pts

OUTCOME: BTT-LVAD ≈ ↑↑1-yr post-OHT mortality (90.5% vs. 92.8%, log-rank p<0.0001). Most deaths ≈ CV cause (PGD)

REVIEWER’S COMMENTS

Values of study:
- Large database
- Propensity matching
- Raised question: should BTT-LVAD pts be listed differently vs. Med-Rx pts

Main limitations:
- Retrospective
- Registry based -> Inconsistent data collection (PGD not universally defined)
- No validation cohort

ESC Heart Failure.

STUDY HIGHLIGHTS

Purpose: BP measured by Doppler vs. A-line (gold standard).

Why: BP control ≈ ↓CVA risk. Measure BP ≈ challenging in CF-LVAD.

Design: N=154; HM2=994 vs. HVAD=939, combined=1933 observations)

Results: A-line MAP vs. simultaneously measured Doppler opening pressure
- $r = 0.741$, $p<0.0001$
- Mean Error = 2.4 [7.5]
- Median error = 1 [-2,5]

Correlation: HM2 better than HVAD

CENTRAL FIGURE

Doppler BP correlates better w/ A-line MAP (87% between ±10mmHg) than A-line systolic BP (64% between ±10mmHg)

Though **Doppler BP** may _overestimate MAP_ as pulse pressure ↑, this is _not a significant clinical concern_, as overestimation is < 5 mmHg over a _wide range_ of pulse pressure (0-30 mmHg)

EXTRAPOLATION LIMITED DUE TO:
- Single center design
- Selection bias
- No HM3 included.

REVIEWER’S COMMENTS

Largest study on this subject to date.

Doppler opening pressure may be the _most accurate method_ for non-invasive BP measurement in CF-LVAD.

Future studies needed to show _consistency in clinical practice_.

Extrapolation limited due to:
- Single center design
- Selection bias
- No HM3 included.
Purpose: compare outcomes of patients with & without ICD or CRT-D (CIED-D).

Why: prior studies conflicting, some suggested no mortality benefits w/ ICD in CF-LVAD patients.

Design: Time-varying analysis using data from multicenter PCHF-VAD registry: N=448 (CIED-D=208 vs. NO-CIED-D=240).

Results: Risk reduction of all-cause mortality w/ CIED-D: 39% (Propensity score adjusted).

Other risk factors for all-cause death: ↑age, LVAD implant as redo surgery, ↑burden of ventricular arrhythmias (VA), pre-VAD vasopressor use.

HR for CV death: 0.65 (p=0.09)
HR for VA post VAD: 1.57 (p=0.06)

Extensive adjustments for potential confounders showing mortality benefit of CIED-D post LVAD.

Prospective randomized study needed.

Limitations:
- Retrospective registry-based study
- Lack of data on arrhythmias in controls (no-CIED-D)
- Disparities in CIED-D use in LVADs between Europe and USA limit extrapolation
- Association ≠ causality