INTERNATIONAL SOCIETY FOR HEART AND LUNG TRANSPLANTATION (ISHLT)

BASIC SCIENCE & TRANSLATIONAL RESEARCH
CORE COMPETENCY CURRICULUM
(ISHLT BSTR CCC)

SECOND EDITION

THE EDUCATIONAL WORKFORCE OF THE
ISHLT BASIC SCIENCE & TRANSLATIONAL RESEARCH COUNCIL

T. MARTINU, E. DIJKE, S. VERLEDEN

CONTACTS:

TEREZA MARTINU
EMAIL: TEREZA.MARTINU@UHN.CA
PHONE: 416.340.4800
FAX: 416.340.3350

ESMÉ DIJKE
EMAIL: DIJKE@UALBERTA.CA
PHONE: 780.492.7259
FAX: 780.492.8239

(V1.1 NOVEMBER 2018)
WORKFORCE LEADERS

Esmé Dijke, PhD
University of Alberta
Department of Lab Medicine & Pathology
Walter C. MacKenzie Health Sciences Center
8440-112 street, room 4B4.19
Edmonton, Alberta T6G 2B7
Dijke@ualberta.ca

Tereza Martinu, MD
Duke University Medical Center
Building MSRB2, Suite 2073-2, DUMC Box 103000
106 Research Drive
Durham, NC 27710
Tereza.martinu@duke.edu

Stijn Verleden, PhD
Lab of Lung Transplantation
Department of Pneumology
Box 706, Herestraat 49, 3000 Leuven
Stijn.Verleden@kuleuven.be

Prior Contributors:
Sonja SchrePFer, MD PhD, Stanford, CA
Carla Baan, PhD, Rotterdam, The Netherlands
Marilia Cascalho, MD PhD, Ann Arbor, MI
Kim Gandy, MD, PhD, Kansas City, MO
Daniel Chambers, MBBS, MD, Brisbane, Australia
Richard Kirk, MA FRCP FRCPC, Newcastle, UK
I. INTRODUCTION AND OVERALL GOALS 3
 Educational Goals
 Learning Objectives

II. BASIC IMMUNOLOGY 4
 Learning Objectives
 1. Innate immunity
 2. Adaptive immunity
 Selected References and Hyperlinks

III. TRANSPLANT IMMUNOBIOLOGY 7
 Learning Objectives
 1. Ischemia reperfusion injury
 2. Immune reactivity to alloantigens
 3. Immune regulation of alloantigen response
 4. Immunity against infectious agents
 5. Microbiome and its interaction with the immune system
 Selected References and Hyperlinks

IV. IMMUNOSUPPRESSION AND IMMUNOMODULATION 12
 Learning Objectives
 1. Overview of immunosuppressive agents and their mode of action
 2. Systemic mechanical immunosuppression
 3. Cellular therapy
 Selected References and Hyperlinks

V. RESEARCH MODELS, ASSAYS, AND TECHNOLOGIES 16
 Learning Objectives
 1. Pre-clinical models
 2. Samples for translational and clinical science
 3. Key analytical techniques
 4. Novel technologies for improved diagnostics
 Selected References and Hyperlinks
I. **INTRODUCTION AND OVERALL GOALS**

The purpose of this compendium is to provide a Core Competency Curriculum in Basic Science and Translational Research (BSTR) as it relates to heart and lung failure and transplantation. This curriculum does not replace a textbook, but intends to provide an outline of essential topics in the field of BSTR as well as references and hyperlinks that should be considered for individual study to develop competencies in various aspects of BSTR. The ISHLT BSTR Academy will focus on core competencies in Basic Science and Translational Research and will fill gaps in practice by assisting clinicians in improving their understanding of the scientific background behind clinical practice, updating basic and translational researchers on recent discoveries, encouraging interaction between basic/translational researchers and clinicians, and stimulating discussion about common basic topics in the fields of heart versus lung failure and transplantation. The Educational Workforce of the ISHLT BSTR Council recognizes the role of BSTR in every discipline of the ISHLT and acknowledges the challenges of accommodating all disciplines in this BSTR Core Competency Curriculum. This compendium and the ISHLT BSTR Academy will therefore focus on basic concepts in immunology and molecular biology related to heart and lung transplantation. Future developments and addendums of this Curriculum may integrate other disciplines. We welcome constructive feedback to further develop the scope and accuracy.

Educational Goals

The educational goals of this activity are to provide a concise review of basic concepts in transplant-related immunology and molecular biology, to define and promote the clinical relevance of BSTR related to heart and lung transplantation, and to encourage interaction between basic scientists, translational researchers, and clinicians via a networking opportunity.

Learning Objectives

After completing this curriculum, participants will have improved competency and professional performance in their abilities to:

1. Understand basic concepts in transplant-related immunology and molecular biology;
2. Recognize key analytical techniques and models used in transplantation research;
3. Understand basic mechanisms of immunosuppression;
4. Recognize key contributions from basic research in transplantation that improved clinical outcomes in heart and lung transplantation;
5. Recognize how clinical questions may inspire basic research;
6. Enable effective communication between research scientists and clinicians and health care professionals.
II. BASIC IMMUNOLOGY

Learning Objectives for Basic Immunology:
1) Understand the principles of inflammation and the role of the complement system;
2) Describe the cells of the innate and adaptive immune system and their mode of action;
3) Distinguish between properties of innate immunity and adaptive immunity;
4) Understand how immune cells recognize antigens;
5) Understand the processes of cell-cell interaction and activation;
6) Describe the immunoregulatory mechanisms for the control of (self-)reactive cells;
7) Understand the concept of immunologic memory.

1. Innate immunity
 A. Inflammation
 B. Complement system
 C. Innate immunity cells
 i. Macrophages
 ii. Dendritic cells
 iii. Natural killer cells
 iv. Neutrophils
 v. Mast cells
 D. Toll-like receptors (TLR)
 i. Diversity
 ii. Ligands
 iii. Signalling

2. Adaptive immunity
 A. Adaptive immunity cells
 i. T cells
 ii. B cells
 iii. NKT cells
 B. Cell-cell interaction
 i. Co-stimulation
 ii. Cytokines/chemokines
 C. Antigen recognition
 i. T cells
 a. T cell receptor
 b. Major histocompatibility complex (MHC)
ii. B cells
 a. B cell receptor
 b. Antibodies
iii. NKT cell
 a. CD1d molecule

D. Cell activation/signalling

E. Cell regulation
 i. Anergy
 ii. Deletion
 iii. Ignorance
 iv. Active suppression

F. Naïve versus memory

G. Cell death
 i. Programmed cell death/apoptosis
 ii. Necrosis

Selected References:

Textbooks

Journal Articles
• Chen GY et al. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 2012. 10: 826.

Selected Hyperlinks:

Posters

• Innate immunity: http://www.nature.com/nri/posters/innate/nri0804_ii_poster.pdf
• Dendritic cells: http://www.nature.com/nri/posters/dendriticcells/nri1107_dendriticcells_poster.pdf
• NK cells: http://www.nature.com/nri/posters/nkcells/nri1012_nkcells_poster.pdf
• T cell subsets: http://www.nature.com/nri/posters/tcellsubsets/nri1009_tcellsubsets_poster.pdf
• B cell subsets: http://www.docstoc.com/docs/113396676/b-cell-poster
• Antigen processing: http://www.nature.com/nri/posters/antigenprocessing/nri0905_antigen_poster.pdf

Videos

• Complement system: http://www.youtube.com/watch?v=vbWYz9XDtlw
• Innate pathogen recognition: http://www.youtube.com/watch?v=gRKHeDzfh0Y&list=PL7D18C93964A61F67
• MHC class I processing: http://www.youtube.com/watch?v=vrFMyJwGxw&list=PL7D18C93964A61F67
• MHC class II processing: http://www.youtube.com/watch?v=_8JMVq7HF2Y&list=PL7D18C93964A61F67
• TCR-APC interaction: http://www.youtube.com/watch?v=Xt_y7f6KivI&list=PL7D18C93964A61F67
• Immunological synapse: http://www.youtube.com/watch?v=R4zuWOSkrAw&list=PL7D18C93964A61F67
• Monoclonal and polyclonal antibodies: http://www.youtube.com/watch?v=I-QSlyyUly8
• Necrosis versus apoptosis: http://www.youtube.com/watch?v=4wPlw_Bdz7Q
III. TRANSPLANT IMMUNOBIOLOGY

Learning Objectives for Transplant Immunology:
1) Define the mechanisms behind ischemia reperfusion injury;
2) Understand the concept of allore cognition;
3) Define the mechanistic differences and interactions between cellular and humoral, acute and chronic, rejection;
4) Recognize the basis for current controversies in the diagnosis and treatment of antibody-mediated rejection;
5) Describe major mechanisms of immunologic regulation and tolerance in transplantation.

1. Ischemia reperfusion injury
 A. Mechanisms

2. Immune reactivity to alloantigens
 A. Alloantigens
 i. ABO blood group system
 ii. HLA antigens and HLA antigen nomenclature
 iii. Non-HLA antigens
 B. Mechanisms of allore cognition
 i. Direct
 ii. Indirect
 iii. Semi-direct
 iv. Role of intra-graft T cell activation and tertiary lymphoid organs
 C. Antibody-mediated versus cellular rejection
 i. Critical concepts and controversies in detection and treatment of antibody-mediated and cellular rejection
 ii. Mechanisms of T cell-based rejection
 iii. Mechanisms of B cell-based / antibody-mediated rejection
 iv. Anti-HLA antibodies in rejection
 ii. HLA antibody nomenclature
 iii. HLA mismatch
 iv. Eplet/epitope mismatch
 i. Auto-antibodies in rejection
 B. Type of allograft rejection
i. Hyperacute rejection
ii. Acute rejection
iii. Chronic rejection
 a. Bronchiolitis obliterans syndrome (BOS) in lung transplantation and epithelial injury
 b. Chronic allograft vasculopathy (CAV) in heart transplantation and endothelial injury
 c. Fibrosis pathways

3. **Immune regulation of alloantigen response**

 A. **Mechanisms of immune regulation**

 i. Deletion
 ii. Active suppression by regulatory cells
 a. Regulatory T cells
 b. Regulatory B cells
 c. Regulatory macrophages
 d. Tolerogenic dendritic cells
 e. Myeloid-derived suppressor cells
 f. Stem cells
 g. NK cells

 B. **Definition of tolerance**

 C. **Definition and possible mechanisms of accommodation**

4. **Immunity against infectious agents**

 A. **Host-defense during post-transplant infections**

 i. Colonization versus infection
 ii. Bacterial (e.g. Pseudomonas)
 iii. Mycobacterial
 iv. Fungal (e.g. Aspergillus)
 v. Viral
 a. Latent (e.g. CMV, HSV)
 b. Community acquired respiratory viruses

 B. **Effect of infections on alloreactivity, rejection, and outcomes**

5. **Microbiome and its interaction with the immune system**

 A. **Bacterial microbiome**

 B. **Virome**

 C. **Fungome**
Selected References:

Journal Articles

• Dorling A. Transplant accommodation – are the lessons learned from xenotransplantation pertinent for clinical allotransplantation? Am J Transplant. 2012. 12: 545.
• Calabrese DR, Lanier LL, Greenland JR. **Natural killer cells in lung transplantation**, Thorax. 2018

Selected Hyperlinks:

Posters
- Regulatory T cells: http://www.nature.com/nri/posters/tregcells/index.html
- Myeloid-derived suppressor cells: http://www.nature.com/nri/posters/mdscs/nri1005_mdscs_poster.pdf

Videos
- Transplant immunology and rejection: Fundamentals. https://www.youtube.com/watch?v=F9UWVSZ0E4g
- Memory cells and rejection: Improving transplant results. By Dr. Alan Kirk at Emory. https://www.youtube.com/watch?v=Ut5Q4XnZtnE
IV. IMMUNOSUPPRESSION AND IMMUNOMODULATION

Learning Objectives for Immunosuppression:
1) Review the history of immunosuppression in heart and lung transplantation;
2) Recognize major categories of immunosuppressive agents used in heart and lung transplantation;
3) Describe the mode of action of immunosuppressive agents;
4) Discuss novel targets in immunosuppression and novel pathways and drugs in the pipeline;
5) Understand the principle of cell-based strategies to induce transplant tolerance.

1. Overview of immunosuppressive agents and their mode of action
 A. Current immunosuppressive agents
 i. Calcineurin inhibitors
 ii. Cell-cycle inhibitors
 iii. Target-of-Rapamycin inhibitors
 iv. Steroid agents
 v. Monoclonal and polyclonal antibodies
 vi. Other agents
 B. Novel immunosuppressive agents (in experimental use only)

2. Systemic mechanical immunosuppression
 A. Total body irradiation
 B. Total lymphoid irradiation
 C. Plasmapheresis, immunoabsorption and photopheresis
 D. Other
 i. Splenectomy
 ii. Thymectomy
 iii. Non-mainstream techniques

3. Cellular therapy
 A. T cells
 i. Regulatory T cells
 ii. Car-T cells
 B. Regulatory B cells
 C. Regulatory macrophages
 D. Tolerogenic dendritic cells
 E. Myeloid-derived suppressor cells
F. **Stem cells and progenitor cells**

 i. Multipotent stem cells

 ii. Pluripotent stem cells

 a. Embryonic stem cells

 b. Induced pluripotent stem (iPS) cells

 iii. Progenitor cells
Selected References:
Journal Articles

Selected Hyperlinks:

V. RESEARCH MODELS, ASSAYS, AND TECHNOLOGIES

Learning Objectives for Research Models and Clinical Assays:
1) Review the different pre-clinical animal models in transplantation research;
2) Understand the role of animal models to answer specific transplant-related questions;
3) Discuss the advantages and disadvantages of pre-clinical animal models;
4) Describe major sources of human samples for translational research;
5) Understand key lab techniques to measure innate and adaptive immune responses and to monitor transplant recipients;
6) Recognize imaging techniques used to analyze organ function, cell survival and lymphocyte trafficking.

1. Pre-clinical models
 A. Animal models – the pros and cons
 i. Murine
 ii. Pig
 iii. Primate
 iv. Ex-vivo conditioned organs
 B. Diversity in models
 i. Transgenic models
 a. Green Fluorescence Protein (GFP) models
 b. Firefly luciferase (fluc) models
 c. Other
 ii. Knock-out/in models
 iii. Humanized models
 D. Key models of rejection in lung and heart Tx

2. Samples for translational and clinical science
 A. Human samples
 i. Blood, serum, plasma
 ii. Lung and heart tissue (biopsies)
 iii. Bronchoalveolar lavage (BAL): supernatant vs. cells
 iv. Explanted allografts (autopsy, retransplant)
 v. Explanted thymuses
 vi. Donor or recipient lymph nodes
 B. Sample processing to answer specific research questions
 i. Centrifugation
 ii. Filtration
iii. Preservation agents
iv. Cryopreservation
v. Biobanking

3. **Key analytical techniques**

 A. **Protein analysis**
 i. Flow cytometry
 a. Cell characterization
 b. Antibody titres
 c. Cell surface proteins
 d. Intracellular proteins
 ii. Multiplex
 iii. Luminex
 iv. ELISA
 v. ELIspot
 vi. Western Blot
 vii. Immunohistochemistry and immunofluorescence
 viii. Proteomics

 B. **DNA analysis**
 i. Genomic PCR
 ii. DNA degradation

 C. **Gene expression analysis / transcriptomics**
 i. Real-Time PCR
 ii. Gene expression arrays (microarrays)
 iii. Single-cell RNA sequencing
 iv. Epigenetics

 D. **MicroRNA analysis**

 E. **Cellular Functional Assays**
 i. MLR
 ii. CTL
 iii. Other

 F. **Histopathology**
 i. Stains: Hematoxylin-Eosin, Masson Trichrome, PAS, EVG, others
 ii. ISHLT grading or rejection
iii. Immunostaining/immunofluorescence

G. Imaging
 i. Echo
 ii. Molecular Imaging
 iii. Bioluminescence imaging (BLI)
 iv. Coronary imaging
 v. Chest imaging
 vi. microCT

H. Novel technologies

4. Novel technologies for improved diagnostics

A. Biomarkers of rejection
B. Molecular microscope
C. Blood gene expression signatures
D. Graft-derived gene expression signatures
E. MicroRNA analysis
F. Circulating donor cell-free DNA
G. Intra-graft immune cell analyses

Selected References:

- Bribriesco AC et al. Experimental models of lung transplantation. Front Biosci, 2013. 5: 266.
Selected Hyperlinks:

Web pages:
- The use of animal models to study genetic disease: http://www.nature.com/scitable/topicpage/the-use-of-animal-models-in-studying-855
- Transgenic mouse models of human disease: http://labs.medicine.ucsf.edu/chrislau/GFP.html
- What is PCR: http://www.genome.gov/10000207
- Real-time PCR tutorial: http://pathmicro.med.sc.edu/pcr/realtime-home.htm
- Western blotting: http://www.piercenet.com/method/overview-western-blotting

Videos:
- DNA microarrays: http://www.youtube.com/watch?v=VNsThMnjKhM
- DNA microarrays: http://www.youtube.com/watch?v=9U-9mIOzoZ8
- Epigenetics overview: http://www.youtube.com/watch?v=Tj_6DcUTRnM