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Dysfunction of the pulmonary allograft with impaired
oxygenation and radiographic opacities consistent with
pulmonary edema occurs in up to 50% of lung transplant
(LTx) recipients.1 In 2005, 4 severity grades of primary graft
dysfunction (PGD 0, 1, 2 and 3) were defined by a working
group within the International Society for Heart and Lung
Transplantation (ISHLT).1 In most cases, the injury is mild and
transient, but in 25% to 30% of cases it can result in severe
hypoxemia with a partial pressure of oxygen/fraction of
inspired oxygen ratio (PaO2/FIO2) of o200 mm Hg (PGD 3)
within the first 72 hours (T0 to T72) after LTx.2,3
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Despite advances in our understanding of donor and
recipient risk factors, donor-recipient matching, organ pre-
servation, surgical techniques and peri-operative care, PGD
still accounts for significant morbidity and mortality after LTx.
This Consensus Statement on prevention and treatment of
PGD aims to update the previous publication from 20054 by
reviewing published evidence on novel strategies for reducing
the incidence of PGD and for attenuating its severity once
developed, in order to mitigate both short- and long-term PGD-
related morbidity and mortality.
Prevention of PGD

Potential strategies to prevent and minimize the develop-
ment and severity of PGD include: (1) optimizing donor
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and recipient selection, donor–recipient matching and
management of donors and recipients pre-operatively;
(2) improving lung preservation and storage techniques;
and (3) improving lung implantation and reperfusion
techniques, all based on currently known PGD risk factors.
Donors and recipients

Donor selection

Lungs are fragile and more sensitive to trauma compared
with other organs. They may be acutely injured in the
hours before and after brain death. This results from direct
trauma due to: contusion; the resuscitation maneuver
utilized; neurogenic edema; pulmonary emboli with thrombi
or fat; aspiration of blood or gastric contents with infec-
tion; or ventilator-associated trauma and pneumonia. Any or
all of these insults make lungs less suitable for transplanta-
tion compared with kidney and liver.5,6 As a result, only
10% to 15% of cadaveric multi-organ donors provide lungs
believed to be suitable for transplantation according to
criteria that were defined during the early days of successful
LTx.7

Efforts to expand the donor pool by transplanting
extended-criteria donor (ECD) lungs have occurred world-
wide.8 Most reports demonstrate equivalent outcomes after
ECD LTx with regard to PGD incidence, early and late
outcomes and freedom from bronchiolitis obliterans syn-
drome (BOS). Three studies,8–10 however, have reported a
higher incidence of PGD 3, with increased mortality in
2 studies.9,10 On the other hand, excluding these donors
based solely on inherent donor risk factors, such as older age
or considerable smoking history, may increase waitlist
mortality, while the outcome for the great majority of
recipients will still be much better than having not received
a transplant.11–13 On balance, caution and clinical judgment
are warranted when using ECD donor lungs with more than
1 extended criterion.10

Lungs recovered from controlled donors after circulatory
death (DCD) are increasingly being transplanted, mainly in
Australia, Canada and some European countries (including
Belgium, The Netherlands, Spain, Switzerland, and the
UK). In several institutional reports, early and late survival
rates were comparable after DCD LTx and conventional
donors after brain death (DBD) LTx. This was confirmed
recently both in an analysis from the DCD Registry14 of the
ISHLT and in a meta-analysis of 11 reported observational
cohort studies.15 Five studies reported on PGD data for
DCD and DBD cohorts. None of these reported significant
differences in PGD rates between DCD and DBD cohorts.
Also, in a pooled analysis of “controlled” (Maastricht Class
III or IV) DCD LTx, there was no difference in PGD rates
between DCD and DBD recipients.15 However, in the
Madrid series, the incidence of PGD 3 in lung recipients
from “uncontrolled” (Maastricht Class I or II) DCDs was
reported to be as high as 38%, with serious impact on early-
and mid-term mortality.16 Therefore, pre-transplant evalua-
tion of Maastricht Class I or II donor lungs with ex-vivo
lung perfusion (EVLP) before LTx is now recommended by
the Madrid group.17

Current evaluation of donor lung quality with gas
exchange, chest radiograph and bronchoscopy is often
difficult and quite subjective. Whenever possible, lungs
should be inspected at the donor hospital. Gas exchange
should be re-evaluated with the chest open and lungs fully
ventilated. It is hoped that, in the near future, biomarkers
correlating with (non-apparent) donor lung injury as well as
reassessment with EVLP will help to better differentiate
pulmonary allografts that should be declined or first treated,
either in the donor before retrieval or during ex-vivo
reconditioning.
Donor management

Donor management should be considered as a continuation
of critical care after confirmation of brain death, with a shift
in focus toward optimal continued functioning of individual
organs.18 Comprehensive donor management by qualified
personnel based on protocols will increase the quantity and
quality of transplantable organs.19,20

A systematic approach to respiratory management should
be followed—in addition to hemodynamic management,
hormonal resuscitation, electrolytes and fluid control and
body temperature maintenance—in order to maximize the
number of suitable donor lungs. In the past, respiratory
management protocols used a non-protective ventilation
strategy based on a tidal volume (TV) of 10 to 15 ml/kg
body weight.21 More recent approaches to optimize lung
recovery include: alveolar recruitment using high levels of
positive end-expiratory pressure (PEEP) (15 cmH2O);
inspiratory pressures of 25 cmH2O; bronchoscopy to assess
and minimize respiratory secretions; 30° head elevation; and
endotracheal cuff pressures of 25 cmH2O to limit aspira-
tion.22,23 After reporting that ventilation with higher TV was
an independent risk factor for the development of acute lung
injury,24 Mascia et al were the first to prospectively study
the impact of a new protective ventilation strategy on the
number of lung donors.25 This ventilation strategy is
characterized by smaller TV (6 to 8 ml/kg predicted body
weight) and lower PEEP (8 to 10 cmH2O), continuous
positive airway pressure during the apnea test and recruit-
ment maneuvers, and is in accordance with the current
standard of care for patients with acute respiratory distress
syndrome (ARDS).26 These different strategies were
implemented in a general protocol that included: low TV
(8 ml/kg); low PEEP (8 to 10 cmH2O); recruitment
maneuvers (PEEP of 15 to 18 cm H2O); fluid restriction
(targeted central venous pressure 6 to 8 mm Hg and
extravascular lung water o10 ml/kg); use of diuretic, if
necessary; addition of methylprednisone (15 mg/kg body
weight); and thyroid supplementation in patients on
inotropes. This protocol improved lung utilization without
jeopardizing the acceptance rate for kidney grafts.27 In a
further study by Minambres et al, comparing 2 study periods
before and after implementing an intensive lung donor
management protocol, the rate of lung DBDs increased
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significantly from 20.1% to 50%, thus quadrupling the total
number of pulmonary grafts retrieved and patients receiving
a lung transplant.28 Of note, no differences were observed in
early recipient survival or in the rate of PGD 3.

In a placebo-controlled, randomized trial, thyroid hor-
mone alone or in combination with corticosteroids had no
effect on donor lung function or yield, whereas steroids
reduced progressive lung water accumulation.29 The BOLD
study, a randomized, placebo-controlled trial, evaluated the
effect of nebulized albuterol on pulmonary edema, but failed
to demonstrate any differences in donor oxygenation or lung
utilization.30

Recipient selection

Recipient selection criteria for LTx were recently revisited
by an ISHLT Pulmonary Council working group.31 Since
the previous publication in 2005,32 additional studies
examining recipient-related risk factors have consistently
reported an association of PGD with pre-transplant
diagnosis (idiopathic pulmonary fibrosis, sarcoidosis and
primary pulmonary hypertension); elevated pulmonary
arterial pressure; and higher body mass index.2,33–38

Ongoing studies examining PGD mechanisms could lead
to advances in the prevention or early treatment of PGD in
patients with an increased risk.

Donor and recipient matching

Donor–recipient matching in LTx is usually directed by
blood group (identity or compatibility) and predicted total
lung capacity (pTLC) based on height, age and gender.
Other donor–recipient characteristics, such as cytomegalo-
virus serology (þ/–), gender (male/female) and age, are
often ignored. The impact of donor-recipient mismatch for
all these variables and their combinations on PGD
occurrence has not been well investigated.39

In several (single-center, multicenter, registry) studies
reported by Eberlein et al, a clear correlation was found
between lung size mismatch and PGD. In all studies,
recipients of undersized organs (donor/recipient pTLC
≤1.0) had an increased PGD risk, whereas those with
oversized lungs (donor/recipient pTLC 41.0) had a reduced
risk.40–42 This distinction was most apparent in patients
without chronic obstructive pulmonary disease (COPD).40

In addition, the post-transplant TV should be appropriate for
the donor pTLC and not the recipient pTLC; otherwise,
ventilation-induced lung injury with capillary leak may lead
to clinical PGD.43 Moreover, the potential for detrimental
hyperinflation with application of negative pleural pressure
to undersized lung grafts has been described.44 On the other
hand, delayed chest closure is advised in recipients with
severely oversized donor lungs to avoid hemodynamic
disturbances by graft compression of the heart early after
LTx.45 An oversized allograft was associated with improved
post-transplant survival for idiopathic pulmonary arterial
hypertension.46 Size mismatch was also associated with
long-term pulmonary allograft function and BOS, in favor
of recipients with oversized lungs.47 In summary, incorpor-
ating the pTLC ratio into the method of lung allocation and
post-transplant management could improve outcomes after
LTx.

Donor–recipient matching for gender in organ transplan-
tation is usually not considered important and so all 4 gender
combinations may be possible. Few reports, mostly single-
center studies with limited sample size focused on the
impact of gender matching on outcome after LTx, but not
specifically in relation to PGD. These studies reported a
conflicting impact of gender mismatching on early and late
survival and BOS.39,48–55 In the largest study (n ¼ 9,651)
using ISHLT Registry data, Sato et al found that the
combination of female donor to male recipient was
associated with a higher 90-day mortality and lower overall
survival, whereas female donor to female recipient was
associated with the best overall survival, after adjusting for
size mismatch and diagnosis.51 Three other studies with
high patient numbers reported similar conclusions.39,49,53 It
remains an open question whether donor-recipient gender
mismatch is an independent risk factor for early mortality
after LTx,51 or whether worse survival in the female donor/
male recipient combination is confounded by size mismatch,
with more frequent use of undersized female donor lungs
into male recipients.39,40,53

In addition to matching of demographic variables, greater
attention should be given to balancing known PGD risk
factors in donor and recipient. Caution and clinical
judgment are still needed when matching ECD lungs to
high-risk recipients, especially recipients with pulmonary
hypertension.9,56,57 Given the complexity of the interaction
of multiple donor and recipient risk factors, algorithms that
aid donor-recipient matching should be developed, with the
aim of reducing the incidence of PGD.

Risk stratification of patients before LTx is important for
several reasons. First, better identification of higher and
lower risk recipient groups may allow the care team to better
prepare for the likelihood of PGD development. Second,
improved pre-operative prediction may facilitate safer
expansion of the donor pool by characterizing lower risk
recipient groups. Third, identification of higher risk
recipient groups can facilitate clinical trials aimed at
reducing PGD by investigating therapeutic interventions
before and/or immediately after LTx. In this regard, a study
by the Lung Transplant Outcomes Group produced valid
estimates of PGD risk using readily available clinical
variables.58
Donor lung preservation and storage

No large, prospective, randomized trials related to lung
preservation have been performed until recently. Thus, the
evidence supporting the practice, as just described, is the
best available and is primarily based on findings from
laboratory research and single- or multicenter cohort studies
performed over the last 5 decades.59–61 The most widely
accepted and utilized conditions for lung flush and storage
can be summarized as follows: preservation solution:
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extracellular-type; flush volume: 60 ml/kg antegrade and
4 × 250 ml retrograde via the pulmonary veins; flush and
storage temperature: 4°C; pulmonary artery flush pressure:
o30 cmH2O; route of flush: antegrade þ retrograde;
oxygen concentration before storage: FIO2 0.3 to 0.5; cold
ischemic time: preferably o6 to 8 hours.

The following sub-sections provide updated information
regarding the conditions for optimizing lung preservation
and storage, including the potential role of EVLP, based on
laboratory and clinical evidence since development of the
2005 ISHLT PGD definition.1

Preservation solutions

No large, randomized trials are available to demonstrate the
superiority in terms of outcome of one preservation solution
over another. Four published clinical reports from different
institutions have compared post-transplant outcomes with
various preservation solutions. In a study using UNOS data
between 2005 and 2008, Perfadex solution was found to be
superior to University of Wisconsin solution in high-risk lung
transplant recipients, with lung allocation scores (LAS) of
437.8 (1-year survival 81.5% vs 73.5%, respectively;
p ¼ 0.02).62 Marasco and colleagues, in a multivariable
analysis with propensity score matching, compared the
impact of 3 preservation solutions (Euro-Collins, Papworth
and Perfadex) on outcomes in 310 lung transplant recipi-
ents.63 Papworth solution was associated with significantly
higher mortality, whereas Perfadex was associated with a
lower PGD incidence at T48. Data from the UK Cardiothor-
acic Transplant Audit were analyzed for possible differences
among current lung preservation techniques.64 Between 1995
and 2003, 681 lung transplants were preserved with either
Euro-Collins solution (n ¼ 284), blood albumin (n ¼ 139),
core cooling (n ¼ 107) or low-potassium dextran solution
(n ¼ 151). There was a significantly increased use of low-
potassium dextran solution over time. Risk-adjusted survival
was similar across the groups and was not affected by
ischemic time. Survival rates at 3 years and freedom from
death caused by PGD were highest in the low-potassium
dextran group and lowest in the blood albumin group (62%
vs 49%, and 95% vs 91%, respectively). The Hannover group
recently reported their experience with 2 extracellular-type
preservation solutions, comparing historical cohorts: Perfadex
(n ¼ 209) from 2002 to 2005 vs Celsior (n ¼ 208) from 2005
to 2009.65 Overall 3-year survival was comparable (66.5% vs
72.0%, respectively; p ¼ 0.25), with significantly longer
ischemic times in the Celsior cohort (355 ± 105 minutes vs
436 ± 139 minutes; p o 0.001). Patients with PGD 3 who
received Perfadex had significantly lower survival rates at 1,
2 and 3 years after LTx when compared with patients who
received Celsior. Freedom from BOS was also lower in the
Perfadex group.65

Flush and storage temperature

Lungs are generally stored at 4°C. Animal experiments have
shown that 10°C may be superior, presumably due to
preservation of membrane sodium potassium channel
function.66 Recently, the University of Groningen group
revisited the question on the best temperature for pulmonary
flush and storage. In a rat lung transplant model after
24 hours of inflated storage, the authors found that room
temperature flushing, followed by storage on ice, provided
the best method for lung graft preservation.67

Route of flush

Antegrade flush through the pulmonary artery has been
standard practice since the first lung transplants were
performed in the 1980s. A subsequent retrograde flush
through the veins was found to have additive benefit,68,69

and hence has been adopted by most as standard practice. Its
beneficial effect may be related to better preservation of the
bronchial tree by flushing the bronchopulmonary collaterals
and by removing small clots and debris from the pulmonary
arterial tree. Gohrbandt et al compared antegrade flush only
(n ¼ 173) vs retrograde flush only (n ¼ 36) in a group of
209 Hannover recipients with lungs preserved using
Perfadex.70 PGD 3 was comparable between groups at T0
to T48, but significantly higher in the retrograde group at
T72 (2.2% vs 14.8%, respectively; p o 0.05). Bronchial
dehiscence occurred more frequently in the retrograde-only
group (0.6% vs 5.6%, respectively; not statistically
significant [NS]), whereas bronchial stenosis occurred more
often in the antegrade-only group (24.9% vs 13.9%,
respectively [NS]). Overall survival and BOS-free survival
were similar.70

Tolerable cold ischemic time

Presently, most teams still tend to limit the ischemic times to
o8 hours with extracellular-type solutions, although
successful outcomes have been reported with longer times.
Thabut et al, in a large French multicenter retrospective
study, examined the impact of graft ischemic time on early
and late outcomes in 752 patients after all types of LTx over
a 12-year period.71 Mean graft ischemic time was 246 ± 96
minutes (range 50 to 660 minutes). After adjustment for 11
potential confounders, graft ischemic time was associated
with early PGD (PaO2/FIO2 at T0 and T6) and with long-
term survival in patients undergoing single or double LTx,
but not in patients undergoing heart-lung transplantation.
The hazard ratio for death with longer ischemic times
increased sharply after 330 minutes, and these results were
unaffected by the preservation fluid used (intracellular-type
vs extracellular-type). In a recent study based on a large data
set from UNOS, however, prolonged (46 hours) cold
ischemic time did not impact survival at 1 and 5 years after
LTx and was also not a negative predictor of primary graft
failure.72

Using a porcine left single-LTx model, University of
Toronto investigators examined the effect of a second cold
ischemic period on allograft function, after an initial 10-hour
period at 4°C followed by 6 hours of EVLP.73 No
differences in allograft parameters were observed at 4 hours
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post-transplant between animals receiving lungs with a
second 2-hour vs 10-hour cold ischemic period after EVLP.
Oxygenation in both groups was superior to that of
recipients of lungs preserved at 4°C for 24 hours without
EVLP. These findings, if confirmed, may help to extend
lung preservation time to 418 hours and may redefine the
logistics of transplantation.74

Cold static storage vs warm preservation with EVLP

Cold pulmonary flush and static storage is currently the
clinical standard for lung preservation, with the intention of
lung protection by slowing cell metabolism to prevent cell
death and organ deterioration.59–61 Currently, normothermic
dynamic preservation with the aid of ex-vivo perfusion
is being investigated for all solid organs, including the
lung.75–79

The modern success of prolonged (12 hours) EVLP
without edema formation is in part due to improvements in
technology and in part due to the use of a buffered,
extracellular solution with an optimal colloid osmotic
pressure.80 In a porcine LTx study at the University of
Toronto, ongoing lung injury after 12 hours of cold storage
was prevented when followed by 12-hour normothermic
EVLP compared with a control group with 24 hours of cold
storage.81 A prospective, international, multicenter, non-
inferiority clinical trial randomized 320 bilateral, standard-
criteria donor lung recipients between cold storage and
immediate normothermic portable ex-vivo machine preser-
vation with OCS Lung (Transmedics, Inc., Andover, MA)
(Inspire trial: Clinical Trials.gov NCT 01630434).82 The
final results were presented at the 17th Congress of the
European Society for Organ Transplantation, Brussels,
Belgium.83 In an effort to answer the question as to whether
all donor lungs should be treated with a period of
normothermic EVLP, a prospective, single-center clinical
trial was conducted by the Vienna lung transplant team.
They randomized 80 patients to transplantation directly after
standard cold preservation with Perfadex or cold preserva-
tion plus 4 hours with normothermic in-hospital EVLP,
using the Toronto technique. There were no statistically
significant outcome differences demonstrable between
groups.84

Ex-vivo methods to evaluate and recondition lungs

Unrecognized injury to the donor lung may become
apparent during EVLP, allowing irrecoverably injured
donor lungs with deteriorating graft function during EVLP
to be declined before transplantation, thus avoiding the risk
of severe PGD in the recipient. The first clinical EVLP cases
were reported by Steen et al from the University of Lund,
both for assessment of an uncontrolled DCD lung85 as well
as for reconditioning of an unacceptable DBD lung.86 Since
then, others have reported case series with good outcomes in
ECD lung recipients after EVLP resuscitation.17,87–101 The
overall lung yield after EVLP across all reported series is
around 80%.79 Studies have suggested a lower rate of PGD
3 in recipients of initially rejected lungs undergoing EVLP
compared with lungs that were grafted immediately.89,99

The role of EVLP for assessment and reconditioning of
questionable donor lungs is being investigated in several
clinical trials.79,102,103 The first clinical trial was conducted
by the Toronto Lung Transplant Program. In the HELP
(Human Ex-Vivo Lung Perfusion) trial, high-risk lungs,
which otherwise would not be used, were assessed with
EVLP.88,89 Eighty percent of the lungs that originally did
not meet acceptance criteria from both DBDs and DCDs
were ultimately transplanted after EVLP and resulted in
equivalent recipient outcomes compared with those of
contemporary standard control donor (SCD) lungs. Rates
of PGD 3 at 72 hours after transplantation were reported to
be low (2% in EVLP lungs vs 8.5% in SCD lungs).89 Other
multicenter trials of EVLP for questionable lungs (NOVEL,
DEVELOP, EXPAND, PERFUSIX) are ongoing and final
reports are pending.104–108

Besides normothermic preservation and evaluation,
EVLP holds great promise for treating damaged donor
lungs. Ongoing research is investigating whether lungs
injured by a variety of mechanisms (brain death, contusion,
aspiration, infection, edema, atelectasis) can be repaired so
that some of these can become transplantable. Diagnostic
strategies and targeted therapies for ex-vivo delivery will
need to be developed for each of these types of injury.
Potential strategies include controlled perfusion and ventila-
tion, inhaled drugs and gases, perfusate additives and gene
and cell therapy.79,103 Thus, EVLP has the potential to
reduce the incidence of PGD 3 by identifying and reversing
insults in the donor organ and limiting ischemia.

Lung implantation and reperfusion techniques

The ultimate outcome of a lung transplant operation has
contributions related to: (i) the donor and the cause of death
and associated injuries; (ii) the lung retrieval and preserva-
tion technique; (iii) the implantation procedure and finally;
(iv) the recipient. Each of these phases of the transplant
procedure will need to be optimized to reduce the incidence
of PGD.

Cooling during implantation

Under normothermic ischemic and anoxic conditions, lung
tissue cells deteriorate very rapidly, and lung adenosine
triphosphate (ATP) stores are essentially depleted in
20 minutes of warm ischemia and anoxia. Cold flush
preservation has been the cornerstone of organ preservation
that made transplantation possible. Stored in the inflated
state, the lung has a unique preservation advantage of
having a source of oxygen—hence it is in a state of
hypothermic aerobic preservation.109,110 Hypothermic static
flush preservation with low-potassium dextran solution
(Perfadex) has utilized this strategy to provide safe, reliable
extended lung preservation.

Normothermic EVLP techniques provide a unique
opportunity to bring the lung back to normal temperature
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to evaluate and treat the lung, but these approaches add a
degree of complexity. Once the lung is taken out of the
storage phase and implanted into the patient, it is atelectatic
and warm and is once again vulnerable to warm, ischemic
and anoxic injury. Hence, for this phase of LTx it is still
recommended that the lung be kept cool. This is achieved by
a terminal flush cooling after EVLP and placing the lung on
a water-cooled cooling jacket in the chest for the
implantation procedure. For standard cold flush-preserved
lungs, the lungs are taken out of the cooler and placed on the
cooling jacket. The underlying principle is centered on the
use of cold when it is needed it for protection and warm
when it is needed for assessment and treatment.

Intra-operative extracorporeal support

Extracorporeal support is used selectively to perform LTx.
The majority of LTx operations can be performed without
the use of extracorporeal support as a single-lung transplant
or sequential bilateral lung transplant technique. However, if
the patient has significant pulmonary hypertension or
becomes unstable during the procedure (either hypotensive
or hypoxic), then one should not hesitate to use extra-
corporeal support. Some have advocated routine use of
cardiopulmonary bypass (CPB) for all transplants, but this
needs to be considered in the balance of inflammation and
anti-coagulation-related morbidity vs benefit of technical
ease in patients that can be transplanted without CPB.111,112

The recent trend has been to use an extracorporeal lung
support (ECLS) with ECMO circuit instead of conventional
CPB, as it allows for less anti-coagulation, less coagulo-
pathy and decreased use of blood products.113–118 In the
Lung Transplant Outcomes Group study, CPB was
associated with higher rates of PGD; however, planned vs
emergent CPB use was not prospectively recorded.2

Blood and blood product use

The Transfusion-related Acute Lung Injury (TRALI) is a
well-described phenomenon of inflammatory lung injury
and an ARDS picture after significant transfusion of blood
products. The already-injured lung (with ischemia-reperfu-
sion injury) is vulnerable to this as an additional “hit,” and
therefore it is advisable to avoid blood transfusion wherever
possible.2 Furthermore, use of the cardiotomy sucker in
standard CPB is also not advisable as the activated blood
likely contributes to further lung injury as an extrapolation
of the aformentioned concept. Use of a cell saver (also
necessary for ECMO circuits) is the favored way to auto-
transfuse shed blood as concentrated and washed red cells
are returned to the patient.

Methods to control reperfusion

The endothelial and epithelial cells in hypothermically
preserved lungs have stiff cell membranes and the rapid
reintroduction of pulmonary artery (PA) blood flow can
inflict a significant shear stress injury to the lung. Studies
have demonstrated that gradual reintroduction of blood flow
over a period of 10 minutes—by slowly releasing the PA
clamp, can significantly improve graft function.119,120 If the
transplant is performed on ECLS support, it is important to
maintain perfusion (some ejection by the right ventricle) and
ventilation to the newly implanted lung while the second
lung is implanted. This avoids adding warm atelectatic
ischemic injury and allows the lung to begin its recovery
phase in a setting of protective ventilation and protective
(low-pressure, low-flow) perfusion. Studies have reported
on reperfusion with leukocyte-filtered blood121,122 and on
adding pharmacologic agents to the initial perfusate of the
implanted lung.123 Ideally, as we gain better understanding
of the mechanisms of the reperfusion state, these types of
interventions can be applied to specifically target known
components of the injury.

Principles of protective ventilation

Ventilation of the newly implanted lung should be
protective. This includes keeping the FIO2 low during the
early reperfusion period—in the range of 0.21 to 0.5.
Ventilation control is usually set at the lowest pressure
controlled setting to achieve a reasonable TV and a PEEP of
5 to 8 cmH2O to assist with gradual recruitment of
alveoli.124

Prophylactic post-operative ECLS (ECMO)

ECLS has traditionally been used as an advanced support
measure for severe PGD in the early post-transplant phase
(see next subsection). It is generally accepted that earlier
institution of ECLS leads to improved salvage rates rather
than delayed implementation.125,126 As an extension of this,
some centers have advanced the concept further to leave
patients on ECLS for a period of recovery (1 to 3 days or so)
when early graft dysfunction is manifest in the operating
room, or even to leave patients on ECLS “prophylactically”
in high-risk recipient cases, such as those with primary
pulmonary hypertension.127,128 Using ECLS as a “preven-
tion of PGD” strategy in this fashion is somewhat surgeon-
and center-specific and further study is required to
determine the threshold at which ECLS could be applied
as a “prophylactic” strategy to protect the newly reperfused
lung in prevention of severe PGD.

Treatment of PGD

General principles of post-transplant PGD
management

There is no consensus on the treatment of PGD, primarily
due to a lack of appropriately powered clinical studies on
the topic. However, there are many similarities between
PGD and ARDS, as they are both characterized by severe
hypoxemia and radiographic evidence of diffuse alveolar
infiltrates.1,129 Most transplant centers tailor their therapies
for PGD based on extrapolated treatments of ARDS.2,130
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As with ARDS, the overall goal in management of patients
with PGD is to minimize oxygen toxicity and to prevent the
volutrauma and barotrauma associated with mechanical
ventilation.131 Although the mainstay of therapy remains
supportive care in the majority of cases of PGD, there have
been data published on utilizing ECMO in patients with
severe PGD to enable more effective supportive care with
less toxicity to the lung allograft.132–134

Ventilator management

There are no clinical studies that have evaluated the various
mechanical ventilation modalities in patients with PGD, but,
given the radiographic and clinical similarities to ARDS,26

many centers use lung protective ventilation (also known as
low TV ventilation) with PEEP as a mainstay of therapy.135

Fluid management

In general, fluid restriction should be used in conjunction
with lung-protective ventilation in patients with PGD.
However, it is important to maintain adequate perfusion so
there is less systemic cytokine release. Judicious diuresis
and fluid control can be used to minimize systemic
perturbations in hemodynamics while avoiding worsening
capillary leak and pulmonary edema. This is typically
achieved by optimizing blood counts via transfusions and
using systemic inotropes and/or vasopressors. Of note, the
optimal hemoglobin level post-transplant has not been
determined.4

Pulmonary vasodilators

Nitric oxide

Preservation and reperfusion of donor lungs markedly
reduces nitric oxide (NO) availability.136 Ischemia–reperfu-
sion injury after LTx, characterized by increased capillary
permeability and the development of non-cardiogenic
pulmonary edema, is thought to be a hypoxic injury
resulting in alterations in inflammatory mediators followed
by a decline in endogenous NO. Several experimental
animal model studies have shown that administration of NO
to the lung allograft results in decreased pulmonary vascular
resistance as well as neutrophil adhesion and platelet
aggregation.137,138 Further experimental animal studies
showed improved lung allograft function with NO treat-
ment.139,140 However, small, randomized clinical trials
failed to show that prophylactic inhaled NO (iNO) had an
impact in prevention of PGD.141–143 A recent systematic
review and meta-analysis for recipient-related clinical risk
factors for PGD also found no significant association
between the use of intra-operative iNO and development
of PGD.144 However, none of the trials performed have been
powered to detect potentially small, but real, differences in
PGD.

Similar to ARDS treatment,145 NO may be useful in the
treatment of established PGD by reducing pulmonary
vasoconstriction and enhancing ventilation-perfusion match-
ing. Although case reports exist with conflicting evidence
regarding clinical outcomes, there continues to be a lack of
randomized clinical studies evaluating the use of NO in the
treatment of PGD after LTx.146–149

At this time, we cannot recommend routine prophylactic
use of NO for the prevention of PGD. However, NO may be
used selectively in patients with established PGD 3 showing
severe hypoxemia and elevated pulmonary artery pressures
as part of overall treatment program.

Prostaglandins

Prostaglandins such as PGI2 (epoprostenol) and PGE1
(alprostadil) play a significant role in pulmonary vasodilation
and inhibition of inflammatory events such as disruption of the
alveolar-capillary barrier, leukocyte adhesion and platelet
aggregation.150 These effects are mediated through cyclic
adenosine monophosphate (cAMP) pathways that are dis-
rupted with the ischemia-reperfusion injury in LTx recipients.
Similar to NO, administration of prostaglandins has been
shown to reduce pulmonary vascular resistance and improve
oxygenation.151–153 During transplant, administration of in-
haled prostaglandins before organ procurement or after
implantation has resulted in decreased inflammatory cytokines,
decreased pulmonary edema, decreased pulmonary artery
pressure and central venous pressure, and improved cardiac
index and mixed venous oxygen saturation.153–155 However,
no studies to date have evaluated the effects of these changes
on clinical PGD.

At this time, there is insufficient data to recommend the
use of routine inhaled prostaglandins for the prevention of
PGD after LTx, although the use of inhaled prostaglandins
for severe hypoxemia or elevated pulmonary artery
pressures may prove to be a useful adjunct, similar to
inhaled NO.

Novel therapies for prevention and treatment of
PGD

Novel therapies for PGD have focused on prevention over
treatment and include surfactant, complement inhibition,
platelet-activating factor antagonists, platelet and neutrophil
traps, stem cells and plasmapheresis. Human studies
evaluating their role in the prevention and treatment of
PGD are listed in Table 1. More details on these novel
therapies are given in Appendix 2.

ECMO

A subset of patients with PGD 3 has the potential to benefit
from post-transplant ECMO. In most cases of PGD,
optimization of conventional ventilator support allows for
recovery of the injured lung. However, mechanical ventila-
tion alone cannot achieve sufficient gas exchange in some
patients with severe PGD. In such cases, the therapeutic
interventions mentioned earlier may be utilized. If these
therapies fail, ECMO is recommended. The general



Table 1 Summary of Human Studies Evaluating Novel Interventions for Prevention and Treatment of PGD After Lung Transplantation

Therapy Design Results
Author and
reference no.

Surfactant: endobronchial instillation of 20 mg/kg
before reperfusion

RCT: 42 recipients Lower PGD, earlier extubation Amital et al189

Surfactant: endobronchial instillation 3 to 7 days post-
Tx

Case series:
5 patients

Improved P/F ratio in the setting of
severe PGD

Amital et al191

Complement inhibition: TP-10 (10 mg/kg) before
reperfusion

RCT: 59 patients No significant difference in time
on vent or ICU stay

Keshavjee et al193

Platelet-activating factor antagonist: 2 mg/kg and
10 mg/kg

RCT: 24 patients Short-lived improved P/F ratio
o8 hours after Tx

Wittwer et al210

ICU, intensive care unit; P/F, PaO2 to FIO2 ratio; PGD, primary graft dysfunction; RCT, randomized, controlled trial; Tx, transplant.
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indication for ECMO in PGD is severe hypoxemia (PO2/
FIO2 o100 mm Hg) not responsive to pulmonary
vasodilation, with or without hypercapnia, acidosis and
right ventricular dysfunction.

One of the major concerns when using ECMO in the post-
transplant period has been the high incidence of complications,
such as bleeding, vascular injury and neurologic deficits.
According to the ARDS literature, the incidence of such
complications has dramatically decreased in recent years. The
main reasons for this decrease are: (1) improved device
technology leading to less blood trauma and the requirement of
lower anti-coagulation parameters (activated clotting time 160
to 180 seconds or activated partial thromboplastin time 1.5 to
2 times normal); (2) earlier implementation of ECMO so
patients are not in multiorgan failure; and (3) broad use of
venous-venous (V-V) ECMO instead of venous-arterial (V-A)
ECMO. V-V ECMO can properly support the majority of
patients with severe PGD, even in the setting of hemodynamic
compromise. Correction of hypoxemia and acidosis with V-V
ECMO and pulmonary vasodilation due to oxygenated blood
perfusing the lungs often leads to rapid hemodynamic
improvement, which nullifies the need for V-A ECMO. One
exception to this generalization is in patients with primary
pulmonary hypertension, where V-A or V-VA hybrid ECMO
is often extended to the post-transplant period to protect the left
ventricle from overflow and subsequent cardiogenic pulmon-
ary edema.127,128

A topic of continued controversy is whether V-A ECMO
can better protect the injured lungs by offloading the
pulmonary circulation. Although this assumption is physiolo-
gically sound, one needs to balance the risks and benefits of
such approach vs V-V ECMO. Some data also support V-V
ECMO as a strategy to decrease pulmonary artery pressures
(PAPs) with an average PAP decrease of 20 mm Hg after
initiation.156 Reduction of pulmonary perfusion with V-A
ECMO may also lead to increased incidence of bronchial
complications, as bronchial vascularization is dependent on
pulmonary flow in the early post-transplant period. Other
concerns with V-A ECMO include increased vascular
complications from the arterial puncture site, increased
neurologic complications, and need for anti-coagulation.

Exemplifying clinical practice, Bermudez and colleagues
reported on a large proportion of V-A ECMO use for PGD, with
survival rates of 56%, 40% and 25% at 30 days, 1 year and
5 years, respectively.133 In contrast, Hartwig and colleagues
used V-V ECMO for PGD in 6% of their transplant population
with survival being substantially better than in previous reports:
30 days, 82%; 1 year, 64%; and 5 years, 49%.134 Thus, V-V
ECMO has been the growing mode of choice for extracorporeal
life support in patients with severe PGD.

Taken together, these findings indicate that post-trans-
plant ECMO is useful for supporting patients through PGD,
but this population still has significantly lower long-term
survival than patients without severe PGD.
Retransplantation

Less than 5% of all lung transplants performed are
retransplants.157,158 Despite improvements in overall out-
comes, repeat LTx demonstrates worse overall survival than
primary LTx. Early “re-do” LTx survival remains particu-
larly hazardous, and this should remain an option of last
resort for the treatment of PGD. Ideally, a patient with PGD
can be managed with the more conservative measures, as
described earlier in this report. This would include
mechanical support such as V-V ECMO, which has proven
to be an invaluable and safe mechanism for bridging
patients through severe PGD. If these other means of
treatment and support prove unsuccessful, then the option to
retransplant the patient may be entertained. The clinical
team should not take this decision lightly as it presents a
tremendous challenge to resources and likely endangers
another pulmonary allograft that may be more appropriately
utilized in an another recipient.

The ISHLT Registry data indicate that survival after
repeat LTx remains well below that of primary LTx.157

However, the median survival after retransplantation has
improved over time and, in the most recent era, has reached
3.0 years. A similar result can be seen in the UNOS
registry.159 Some of this may be due to improvements in
best available care, but some of the improvements may also
be secondary to implementation of the LAS in the United
States and elsewhere, which more quickly triages available
allografts to these patients over less ill ones. What is clear
when analyzing both data sets is that the interval between



Van Raemdonck et al. Prevention and Treatment of PGD 1129
primary transplantation and retransplantation is strongly
associated with survival. In the ISHLT Registry, those
patients retransplanted within 1 month of the primary
transplant had a median survival of o6 months. Similarly,
early retransplant, o90 days after primary transplant in the
USA experience, showed a hazard ratio (HR) ¼ 2.4 com-
pared with late retransplant and an HR ¼ 3.1 compared with
primary transplant. Likewise, in the USA, those patients
specifically retransplanted for PGD had worse survival
compared with those transplanted for BOS (HR ¼ 1.63,
95% confidence interval 1.11 to 2.38), even since
implementation of the LAS. Although the data would
suggest that peak allograft function is attenuated in patients
with severe PGD,134 a better resource utilization strategy
may be to support patients with severe PGD through the
process and then perform late retransplant if necessary,
when overall survival is expected to be better.
Conclusions

Dysfunction of the pulmonary allograft during the first
72 hours after LTx may be the end result of several
physiologic and biochemical insults that occur during the
transplantation process, namely: in the donor before and
after death; during flush preservation and storage; during
implantation; and after reperfusion in a specific recipient.
For the best possible outcome, each of these phases of the
transplant procedure will need to be optimized. There has
been significant progress in the past decade in identifying
donor and recipient risk factors for PGD.

Thankfully, in most patients, PGD is of mild to moderate
severity, and can be managed with standard supportive
therapy in the intensive care unit. In some patients, however,
PGD can be severe. Many findings have been published on
utilizing ECMO early in the post-transplant course to
support these patients who are at significant risk for early
death.

As we learn more about the mechanisms of this injury,
new strategies need to be developed to specifically
ameliorate each component of the injury process. Multi-
center clinical trials would be helpful in determining the best
management for LTx recipients with PGD. The goal of the
LTx community is to reduce the risk for early death and
improve early- and long-term outcome after LTx for patients
afflicted with PGD at all levels of severity.
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Members of the ISHLT PGD Working Group IV include:
Marcelo Cypel, R. Duane Davis, Matthew G. Hartwig, Don
Hayes, Jr, Steve Ivulich, Marshall I. Hertz, Shaf Keshavjee,
Jasleen Kukreja, Erika Lease, Gabriel Loor, Olaf Mercier,
Luca Paoletti, Jasvir Parmar, Reinaldo Rampolla, Dirk Van
Raemdonck, Rajat Walia, and Keith Wille.

Appendix 2. : Novel therapies for prevention
and treatment of PGD

1. Surfactant

Pulmonary surfactant is a heterogeneous, surface-active
lipoprotein complex that is composed of 90% lipids (65%
phosphatidylcholine) and approximately 10% serum-de-
rived proteins, with the latter representing the 4 surfactant-
associated proteins (SP-A, SP-B, SP-C and SP-D).160,161

After synthesis by Type II pneumocytes, surfactant is
secreted into the alveolar space where it forms a stable
monolayer, resulting in reduced surface tension of the
alveoli and stabilization during end-expiration, prevention
of atelectasis and alveolar edema and an optimal surface
area for gas exchange.160,161 Clinical and experimental
studies have demonstrated that ischemia, cold storage and
reperfusion associated with LTx influences surfactant
composition and function,162–167 including alterations in
the surfactant aggregate ratio with decreases in phos-
phatidylcholine and phosphatidylglycerol. These alterations
correlate with a reduction in pulmonary com-
pliance, resulting in alveolar collapse, ventilation-perfusion
mismatch, pulmonary edema and decreased oxygena-
tion.168–170 Moreover, preliminary experimental studies
and clinical experience with exogenous administration
of surfactant have shown partial mitigation of these
complications.162–165,171–182

Although exogenous surfactant appeared to be beneficial
in LTx in early studies, critical questions remain that include
dosing and timing of administration (e.g., at procurement vs
reperfusion, or both). In an important experimental model,
attenuation of lung ischemia-reperfusion injury by pre-
ischemic exogenous surfactant was described through
stabilizing and increasing the active endogenous intra-
alveolar surfactant pool.183 Donor lung pre-treatment with
an SP-A-free surfactant agent also maintained serum NO
and reduced hemodynamic disturbances, while better
preserving alveolar integrity in a porcine LTx model.170

Likewise, in another experimental model, treatment with
surfactant before lung reperfusion resulted in improved lung
compliance, improved oxygenation, decreased protein
leakage and enhanced survival.184,185 Again, when adminis-
tered before ischemia-reperfusion injury, intratracheal
surfactant application significantly reduced intra-alveolar
edema and prevented atelectasis, whereas peribronchovas-
cular edema increased and alveolar Type II cells’ morpho-
logic alterations were not influenced by surfactant
treatment,186 suggesting the benefit of exogenous surfactant
is related to intra-alveolar activity. In a murine model with
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exogenous surfactant being effective in both prevention and
treatment of lung ischemia-reperfusion injury, Wittwer
et al187 evaluated its application at the time of flush
preservation, after 4-hour ischemia and during reperfusion
and found that donor lung pre-treatment with endobronchial
surfactant provided optimal preservation quality compared
with post-ischemic application or during reperfusion.

Several groups have undertaken research examining the
benefit of exogenous surfactant in human LTx. The
Hannover group performed a single-center, prospective,
randomized trial in which surfactant was instilled by
bronchoscopy into donor lungs before retrieval; the
surfactant study group had higher phospholipids in
bronchoalveolar lavage fluid and improved surfactant
function based on enhanced small-to-large aggregate
ratio.188 Clinically, the patients given surfactant had a
significantly higher pulmonary function 1 month after
transplant, but this difference disappeared by the end of
the first post-transplant year.188 In another single-center,
prospective, randomized study,189 surfactant was delivered
through a bronchoscope after establishment of bronchial
anastomosis and demonstrated improved oxygenation, few-
er radiographic abnormalities, lower PGD grade, reduced
severe PGD rates, earlier extubation and shorter intensive
care unit length of stay, along with better short-term
pulmonary function outcomes. As a salvage therapy after
ischemia–reperfusion injury or development of PGD in lung
transplant recipients, 2 case series successfully used
exogenous surfactant with significant improvement in
oxygenation and resolution of radiologic infiltrates and
showed excellent short-term graft function.190,191

For now, exogenous surfactant therapy remains as a
promising therapeutic option for lung ischemia-reperfusion
injury in LTx, with associated improvement in oxygenation,
prevention of PGD, and optimal short-term clinical out-
comes in single-center studies and case series. Although
there is a lack of rigorous prospective, randomized studies,
the available data suggest surfactant may best be used in a
preventive, as opposed to therapeutic, manner.
2. Complement inhibition

With activation of the complement system having an
important role in mediating reperfusion injury after LTx,
early interference of this pathway has been examined as a
potential therapeutic target to reduce lung reperfusion injury
in LTx. Complement activation accelerates tissue injury
directly by complement factors or indirectly by comple-
ment-mediated polymorphonuclear neutrophil activation. In
a large-animal model in which C1-esterase inhibitor was
infused (half the dose given 10 minutes before and the other
half 10 minutes after reperfusion), reduced lung ischemia-
reperfusion injury and improved pulmonary function were
observed.192 Starting in the late 1990s, experimental studies,
case reports and a multicenter, randomized, double-blinded,
placebo-controlled trial showed early evidence that soluble
complement receptor-1 (sCR1), a complement inhibitor,
may be beneficial for the treatment of PGD.193–197 In the
randomized, double-blinded, multicenter, placebo-con-
trolled trial, where 28 patients received sCR1 and 31
received placebo before reperfusion, early outcomes were
improved in the setting of 90% complement inhibition for
24 hours, with a return to normal activity by 72 hours.193

Combining the complement inhibition of sCR1 with the
leukocyte adhesion inhibition of selectin ligand sialyl Lewis
X (sLeX) resulted in a significant reduction of reperfusion
injury in experimental models, with no effect on graft
rejection.198,199 More recently, the role of complement-
mediated microvascular injury in chronic lung allograft
rejection has been under investigation.200 In kidney
transplantation, targeting complement activation in the
donor after brain death improved short-term renal function
after transplantation in recipients.201 With clear evidence
that complement inhibition improves early outcomes,
further research is needed to determine optimal techniques
of administration of these potential therapies at time of
reperfusion in LTx in order to prevent PGD and potentially
improve long-term outcomes.

3. Platelet-activating factor antagonists

Platelet-activating factor (PAF) is a phospholipid that is
released during ischemic lung injury, so PAF antagonists
were initially described as a potential adjunct for lung
preservation in the early 1990s.202–208 A PAF antagonist
combined with an endothelin antagonist in an experimental
model showed superior post-transplant graft function 24
hours after reperfusion compared with no treatment and each
individual agent, suggesting a synergistic role.209 A 2001
study in humans demonstrated significant improvement in
alveolar-arterial oxygen differences for the first 12 hours
after reperfusion and better chest X-ray score in randomly
assigned patients who received low-dose (n ¼ 8) and high-
dose (n ¼ 8) PAF antagonist in the flush solution before
reperfusion, when compared with a control group (n ¼ 8).210

The investigators reported a clear benefit of the PAF
antagonist in the early post-ischemic period, but the
distinction dissipated after 32 hours.210 In 1994, a single-
center, randomized, double-blind trial on 29 kidney
transplant recipients showed significantly less primary graft
failure in donor organs treated with a PAF antagonist.211

More recently, anti-PAF attenuated leukocyte adhesion
response in an experimental model of bowel ischemia with
application in small bowel transplantation resulted in
improved sub-mucosal capillary flow and reduced tissue
injury.212 Although investigations on the role of PAF
antagonists in LTx are not as common as they were 2 decades
ago, there is enough evidence suggesting they may be useful
as adjunct therapy during the early post-transplant period and
thus may assist in PGD treatment. Further research is needed
to better define the role of PAF antagonists in LTx.

4. Platelets and neutrophil extracellular traps

Platelets may represent a target for therapy as previous
studies have highlighted a potential role in lung injury.213
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More recently, platelet depletion in 2 mouse models of
ARDS reduced the severity of lung injury and increased
survival. Platelet deprivation post-operatively may not be
feasible, but this effect could also be reproduced by pre-
treatment with aspirin.214–216 Interest in pre-emptive treat-
ment with aspirin in ARDS is being explored in high-risk
pre-operative patients.215 This may potentially be transla-
table to LTx recipients as a preventive or therapeutic
strategy.

The presence of neutrophil extracellular traps (NETs) is
thought to activate epithelial cells and increase the
aggregation of platelets. This observation was confirmed
in both an experimental mouse model and a human study.
Targeting these NETs with DNAse alone and in combina-
tion with aspirin decreased the degree of lung injury in both
models.217 One possible mechanistic explanation is the
observation that delayed neutrophil apoptosis, a feature of
ARDS, is decreased by aspirin, which allows for resolution
of the persisting inflammation.218

5. Stem cells

Stem cells are considered to have potent anti-inflammatory
properties, through local paracrine mechanisms, as well the
tantalizing potential for local regeneration. Stem cells also
have the ability to donate functioning mitochondria to
injured cells. Multiple animal studies in ARDS models have
demonstrated an increase in the anti-inflammatory cytokines
(interleukin-8 and interleukin-1 receptor antagonists), thus
ameliorating inflammation. A small-scale human EVLP
study involving 4 discarded donor lungs in a protracted
ischemic model suggested improvement in the inflammatory
profile and histology after intratracheal administration of
multipotent adult progenitor cells.219–221 Interest in this area
has grown significantly and a critical care medicine society
has proposed a Phase I study, the STem Cells for ARDS
Trial (START), to examine the feasibility of treatment with
stem cells.222

6. Plasmapheresis

The presence of non-HLA antibodies has been linked to
development of both PGD and BOS, particularly in cystic
fibrosis and idiopathic pulmonary fibrosis patients. In a
single-center retrospective study, the presence of Kα1
tubulin and collagen V auto-antibodies was associated with
a significantly higher risk of PGD (88% vs 54%, p o 0.05)
compared with control groups.223 The possibility of
reducing these antibodies with plasmapheresis may provide
a novel target for at-risk populations.

7. Future developments

The intensity of injury generated by an episode of PGD
suggests that multiple pathways are synchronously activated
at the time of lung reperfusion. The Lung Transplant
Outcomes Group has identified a series of potential
therapeutic targets related to oxidant stress that were
statistically related to PGD, including donor NADPH
oxidase 3 (NOX3), glutathione peroxidase (GPX1) and
nuclear factor (NRF-2). The GPX1 association included
3 individual loci (p-values between 0.006 and 0.049) and
the NRF-2 (NFE2L2) association included 2 loci (p ¼ 0.03
and 0.05).224 Polymorphisms in the interleukin-17 and
interleukin-23 receptors of the recipients were associated
with an increased incidence of PGD.225 Further elucidating
the affected pathways in PGD may lead to novel therapeutic
interventions.

Unfortunately, 2 large, randomized, controlled trials
examining the use of β2-agonists and statins in ARDS
failed to demonstrate a benefit from either therapy.226,227

However, it is of interest to note from observational data
from the ISHLT Registry that patients on statins post-LTx
have a better outcome than those not on statins.228 Other
novel therapies, including renin-angiotensin axis blockers,
peroxisome proliferator agonist receptor ligands, curcumin
and inhaled heparin, are currently being considered. These
approaches have some supporting data in animal models,
but have limited clinical data.229
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