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Lungs with primary graft dysfunction (PGD) are char-
acteristically edematous and have reduced compliance and
impaired gas exchange. PGD is often attributed to ischemia–
reperfusion injury (IRI). Because IRI has been shown to
cause alterations in the integrity of the endothelial barrier and
alveolar epithelial capacity to resorb fluid,1,2 every trans-
planted lung is at risk of developing edema if there is any
elevation of pulmonary venous pressure, either due to
mechanical problems or left ventricular dysfunction.
Previously, PGD has been attributed to events in the
recipient, but pre-existing inflammatory status of the donor
lung before recovery may also impact the development of
PGD, as has been observed in brain-dead donors or donors
after circulatory death.3,4 Aside from early graft dysfunction,
PGD is critically important due to its impact on long-term
survival, because of the increased risk of bronchiolitis
obliterans syndrome (BOS).5,6

Our current theoretical understanding of the molecular
triggers of PGD can be traced to ideas proposed by Polly
Matzinger over 20 years ago.7 In her “Danger Hypothesis,”
she proposed that endogenous substances (now categorized
as damage-associated molecular patterns [DAMPs]) released
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from injured cells would promote innate immune responses
that can prevent allograft survival.8 Janeway and Medzhitov
showed that DAMPs, along with pathogen-associated
molecule patterns (PAMPs), are recognized by pattern
recognition receptors (PRRs) that, when engaged, stimulate
inflammatory gene expression.9 Later reports showed DAMP
accumulation and the involvement of PRR signaling path-
ways in PGD patients, but precisely how they contribute to
this type of acute lung injury remains an active area of
investigation,3,10,11 as lung IRI also may be influenced by
PAMPs derived from the gut microbiota.12 In addition, the
recent availability of multicenter-derived lung transplant
recipient outcome data in conjunction with transcriptome
and genomic analysis and new experimental approaches has
identified additional mechanisms that could promote PGD.
This has led to new insights into the role of the lung
parenchyma, myeloid cells, lymphocytes, inflammatory
mediators and autoreactive lung proteins. Moreover, there
have been recent discoveries on how tissue inflammation is
resolved, which, when applied to PGD, may provide the basis
for the development of novel therapies. Herein we review the
cellular and molecular mechanisms that mediate PGD.

Epithelium and endothelium

The inability to maintain and repair homeostatic barriers that
promote pulmonary function, namely airway epithelium and
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vascular endothelium, is thought to play a key role in PGD.
RNA transcript profiling experiments performed on 50 lungs
before implantation analyzed differentially expressed tran-
scripts between recipients with Grade 3 PGD at time of
return to the intensive care unit (T0) and those that were
Grade 0 PGD at T0.13 Of those 50 recipients, 16 developed
PGD Grade 3 at T0 and 34 were PGD negative at T0.
Twenty-three genes were increased and 42 were decreased
in the PGD group. A number of gene networks were
identified that were involved in apoptosis and cellular stress
responses. Metallothionein 3 mRNA expression levels were
higher in donor lungs that did not develop PGD. Those data
suggest that donor lungs with more intact anti-oxidant
defense and with a greater capability to support epithelial
wound repair may be protected from PGD. However,
because T0 PGD development may be related to intra-
operative management, further studies will be needed to
determine whether such gene expression patterns are linked
to PGD severity at 72 hours post-transplant.

Collagen Type V (Col-V) is a constituent of the
extracellular matrix and is usually hidden from exposure
to the host immune system because it is contained entirely
within Collagen Type I fibrils. Damage to the collagen
structure in the lung can lead to exposure of Col-V, allowing
it to act as a cryptic antigen that leads to autoimmunity
against Col-V and a delayed-type hypersensitivity reaction.
It has been suggested that pre-formed antibodies to Col-V in
patients with advanced lung disease may predispose that
individual to develop PGD after lung transplantation.14

Fifty-five patients awaiting lung transplant were investigated
to assess their memory T-cell responses to Col-V. Sixteen
had positive responses to Col-V. The positivity was much
more frequent among idiopathic pulmonary fibrosis (IPF)
patients (58.8%) compared to patients without IPF (15.8%).
In a univariate analysis, T-cell responses to Col-V were
associated with an increased risk of developing PGD. That
study suggested that epithelium and endothelium basement
membrane disruption in the donor lung may act as a trigger
for T-cell–mediated immune responses in recipients pre-
sensitized to Col-V.

Although endothelium and alveolar epithelium are targets
of injury, they can also be sources of inflammatory
mediators that may promote PGD. For example, studies
have shown that ischemia, as a consequence of donor lung
procurement, is mechanically sensed by endothelial cells,
which respond by producing reactive oxygen species and
nitric oxide that initiate pre-transplant tissue injury.15,16 The
US Lung Transplant Outcomes Group compared plasma
levels of 25 cytokines and chemokines in 25 recipients with
Grade 3 PGD at 72 hours compared to 25 recipients without
PGD at any time-point from 6 hours to 72 hours as a nested
case-control study.17 A multivariable logistic regression
analysis showed that PGD cases had higher circulating
levels of the chemokines monocyte chemoattractant protein-
1/CC motif chemokine 2 (MCP-1/CCL2) and IP-10/CXC
ligand 10, which can be secreted by activated endothelial
cells and alveolar epithelial cells. That report suggested that
an early chemotactic signal for monocytes and lymphocytes
was present in lungs with PGD and that the activated
endothelial or epithelial surfaces may have contributed to
that signal. Notably, despite observations that cultured
bronchial epithelial cells isolated from chronically rejected
lung transplant recipients produced high amounts of
inflammatory mediators,18 it remains to be determined
whether bronchial epithelium plays a direct role in IRI-
mediated cytokine production in PGD patients.

Toll-like receptor expression (TLR) on lung parenchymal
cells may also play a major role in exacerbating PGD.19

TLR4, a PRR sensor for lipopolysaccharide (LPS) and
damage-associated molecular patterns released by injured
cells, triggered early and sustained edema on non-bone-
marrow-derived cells along with early activation of mito-
gen-activated protein kinases (MAPKs) and nuclear factor-
kappaB (NF-κB) in a murine model of lung IRI. Endothelial
cells subjected to simulated cold IRI suggested the
possibility that edema due to IRI may be due to endothelial
cell cytoskeletal alteration, thus leading to inter-endothelial
cell gap formation during ischemia. Simulated reperfusion
resulted in activation of MAPKs and NF-κB and expression
of interleukin (IL)-6 and IL-8 by endothelial cells.20 In
addition, in a cell culture model of simulated warm
ischemia, inter-endothelial cell gap formation was prevented
by a competitive TLR4 antagonist, implicating a direct link
between pulmonary edema and TLR signaling.19

Angiotensin II (AngII) signaling has been implicated in
the pathogenesis of pulmonary fibrosis. Moreover, inhibi-
tion of renin–angiotensin signaling has been shown to
ameliorate experimental fibrous airway obliteration. In one
study, there was an acute increase in plasma AngII and
matrix metalloproteinase-9 (MMP-9) expression after lung
transplantation, with a corresponding rise in angiotensin
receptor 2 (ATR2) and tissue inhibitor of matrix metallo-
proteinase-1 (TIMP-1) expression on epithelial cells recov-
ered from bronchoalveolar lavage fluid.21 Those data
indicate that pro-fibrotic signals induced by ischemia-
reperfusion and cardiopulmonary bypass may impair
recovery of epithelial cell integrity.

Pulmonary surfactant proteins produced by Type II
pneumocytes are known to have major functions in host
defense and lung immune homeostasis. Recipients of lung
allografts with low levels of surfactant protein A (SP-A)
mRNA expression before implantation had an increased
incidence of Grades 2 or 3 PGD, higher 30-day mortality,
and a greater likelihood of developing chronic lung allograft
dysfunction (CLAD) or causing death within 24 months of
transplant.22 Specifically, donor lungs with SP-A2 genotype
1A1A0 had the lowest level of SP-A messenger RNA
(mRNA) expression.

The Clinical Trials in Organ Transplantation investiga-
tors sought to identify key pathways mediating PGD by
comparing pre- and post-transplant donor lung bronchoal-
veolar lavage fluid (BALF) mRNA expression profiles in
lung recipients who developed Grade 3 PGD versus controls
matched for diagnosis and donor age who did not develop
PGD.23 Differential expression and gene set enrichment
analysis identified inflammation activation and innate
immune signaling via TLR pathways as major contributors
to the pathogenesis of PGD. Those findings indicated an
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early innate immune signal in the lung, perhaps in response
to inflammatory cytokines or DAMPs released by injured
epithelial and endothelial cells.

Alveolar macrophages

PGD classically has been thought to be a biphasic process,
with the first phase determined by donor cells and donor
characteristics, whereas the infiltrating recipient cells were
responsible for the second phase, which occurred within
hours of reperfusion. The alveolar macrophage (AM) has
been a known source of cytokines and oxidants in many
models of acute inflammatory lung injury. AM depletion or
inactivation reduced IRI in animal models.24–26 After
ischemia and 15 minutes of reperfusion, tumor necrosis
factor-alpha (TNF-α) and IL-1β localized to the AM and the
early release allowed the AM to enhance the activation of
other lung cell types.27–29 Therefore, AM activation and
downstream signaling have been shown to be critical in the
coordination and amplification of inflammatory signaling
and development of lung reperfusion injury. More recently,
the critical importance of TLR signaling in AM early in lung
IRI has been recognized. Although the activating ligand is
not yet known, within 15 minutes of reperfusion TLR4,
through a signaling pathway that is dependent on the adapter
protein myeloid differentiation factor 88 (MyD88), pro-
moted MAPK activation, nuclear translocation of NF-κB
and transcriptional upregulation of inflammatory media-
tors.30 The same changes also occurred when AMs were
isolated in culture and subjected to hypoxia and reoxygena-
tion. The use of short-interfering RNA to knock down TLR4
expression in the AM markedly reduced the AM response
to oxidative stress in vivo and in vitro.31 That signaling
paradigm can be manipulated to take advantage of the dual
nature of TLR4 signaling in the AM and provide protection
from lung reperfusion injury. Low-dose LPS (which does
not induce lung injury independently) can be administered
to experimental animals intratracheally before lung ischemia
and result in non-ischemic pre-conditioning. Such LPS pre-
treatment would inhibit AM TLR4 signaling through
MyD88-dependent and -independent signaling pathways
that utilize the adapter molecules toll-like/IL-1 receptor-
domain-containing, adapter-inducing interferon-β (TRIF),
and TRIF-related adapter molecule. The result enhanced
AM production of interferon (IFN)-γ and IL-10, reduced
production of TNF-α and IL-1β and promoted lung
protection.32 Notably, those findings from experimental
models of lung IRI are consistent with recent human
genomic studies of PGD.11,23

Neutrophils

Neutrophilia is thought to play a critical role in PGD.33

However, how neutrophils regulate PGD severity remains
to be defined. The bulk of our understanding of this
relationship has come from experimental lung injury models
showing that the initial recruitment of neutrophils was
triggered by DAMP release.34–37 As suggested by the
“Danger Hypothesis” noted earlier, DAMPs stimulated
cognate PRRs to induce the expression of ELRþ CXC
chemokines and IL-1β, both of which were found to
promote expression of adhesion molecules on the luminal
surface of vascular endothelium to stimulate neutrophil
transendothelial migration into interstitial tissues.38 In
particular, early expression of IL-17,39 a well-established
stimulator of ELRþ CXC chemokines,40 may play a critical
role in early neutrophil graft sequestration.34 In a lung
warm-ischemia model, the DAMP high-mobility group box
1 (HMGB1) protein was recently shown to stimulate PRR,
the receptor for advanced glycation products (RAGE) on
invariant natural killer T cells, to produce IL-17 and result in
pulmonary neutrophilia. Consistent with these observations
were reports showing that having either elevated RAGE
plasma levels or carrying certain IL-17 receptor polymorph-
isms increased the risk for PGD.10,41

Grommes and Soehnlein showed that, after entry into the
lung, neutrophils released reactive oxygen species (ROS),
serine proteases, cationic peptides and MMPs that catalyzed
the breakdown of homeostatic barriers that regulate blood
gas exchange.42 For example, ROS have been shown to
disrupt endothelial cell tight junctions and induce the
necrosis of alveolar Type II cells, whereas the serine
protease neutrophil elastase and the cationic peptide LL-37
have been shown to trigger epithelial cell apoptosis.43,44 In
addition, MMPs, such as MMP-8, degraded the pulmonary
collagen matrix.45,46 In addition to directly inflicting
parenchymal tissue damage, neutrophils may promote
PGD by directly inhibiting gas exchange through the
expulsion of nuclear chromatin within the capillary lumen.47

The structures known as neutrophil extracellular traps
(NETs) have recently been shown to accumulate in PGD
patients.48

Given that the role of neutrophils in PGD is likely very
complex, there has been considerable interest in developing
better models of this injury. Introduction of the fully aerated
and vascularized mouse orthotopic lung transplant (mOLT)
model, which allows for the practical use of genetic
dissection and transgene techniques, along with develop-
ment of intravital lung 2-photon microscopy to visualize and
quantitate leukocyte trafficking, has led to new insights into
how neutrophils promote inflammatory responses after lung
transplantation.49,50 Importantly, when the mOLT was used
to model PGD, there was a replication of the clinical
scenario of neutrophilia, poor graft function and edema.51

Partial antibody-mediated depletion of neutrophils helped
restore lung graft function and reduced tissue damage and
inflammatory gene expression.52 That property of the model
has led to further insights into how neutrophils promote
PGD. These included the demonstration that the co-
transcriptional factor B-cell lymphoma 3–encoded protein
and the inhibitory κβ kinase β were negative regulators of
lung transplant-mediated IRI through limiting emergency
granulopoiesis and attenuating neutrophil chemotactic
mediator expression, respectively.52,53 In addition, neutro-
phil extravasation into graft interstitium was shown,
unexpectedly, to be dependent on inflammatory mono-
cytes,50 and intragraft neutrophils were observed making
physical, prolonged contact with antigen-presenting cells to
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stimulate IL-12 expression and alloreactive Th1 cell
expansion, suggesting a mechanism linking PGD to
rejection.54 These data, taken collectively, may explain
clinical reports of high levels of monocyte chemoattractants
and IL-12 in PGD patients and the association between
neutrophilia and rejection.17,55 Finally, the role of NETs in
PGD patients was recently investigated using that model.48

Analogous to PGD patients, NETs were shown to
accumulate in mOLT grafts. However, when mOLT
recipients were treated with DNAse, pulmonary function
improved significantly, suggesting a potential therapeutic
approach for PGD.

Although neutrophils are predominantly recognized for
their pro-inflammatory role in PGD, recent work has
suggested that some level of neutrophilia is required to
resolve tissue injury. For example, neutrophil swarming,
which has been observed in lung transplant models of PGD,
was reported to promote wound healing that will seal off
damaged tissue.50 In addition, neutrophils through their
own apoptotic death were found to play a critical role in
re-establishing lung homeostasis after injury through the
subsequent phagocytic uptake of their carcasses by lung
macrophages.56 The clearance of apoptotic cells, efferocy-
tosis, inhibited the production of IL-12 and induced the
expression of anti-inflammatory mediators such as IL-10,57

a cytokine shown to promote the functional repair of human
donor lungs when expressed ectopically.58 Future studies
are needed to determine whether augmenting neutrophil
efferocytosis may be useful as a therapeutic strategy to
prevent PGD.

Lymphocytes

In a single lung transplant rat model, preservation with
Perfadex solution primed with thioredoxin (Trx) showed
significantly better graft function and attenuation of
infiltration of macrophages and cytotoxic T cells compared
with rats not primed with Trx.59 In mice, comparable and
significant protection from lung dysfunction and injury
occurred after antibody depletion of neutrophils or CD4þ T
cells but not CD8þ T cells. Lung IRI was proportional to the
infiltration of pulmonary neutrophils (PMNs) but not T
cells. Moreover, PMN infiltration and the production of
CXCL1/KC were significantly diminished by CD4þ T-cell
depletion but not vice versa. That study suggested that
PMNs mediated IRI; however, CD4þ T cells played a
critical role in stimulating chemokine production and were
responsible for neutrophil chemotaxis into the lung at the
time of reperfusion.60

In a syngeneic rat lung transplant model,61 recipient
CD4þ T cells infiltrated lung grafts within 1 hour of
reperfusion and upregulated the expression of CD25 over
the ensuing 12 hours. After 12 hours of reperfusion,
recipient nude rats demonstrated significantly better oxyge-
nation and lower peak airway pressures than recipient
heterozygous rats. The effect of T cells was independent of
neutrophil recruitment and activation in the transplanted
lung. The results demonstrated that recipient CD4þ T cells
were activated and mediated lung injury 12 hours after lung
transplantation in that model. The proliferation of the T cells
was antigen-independent and is known as bystander
activation.

As noted earlier, pre-transplant activation of recipient
immunity to Col-V may play a role in PGD after
transplantation. Th17- and monocyte-dependent immunor-
eactivity directed toward Col-V has been associated with
poor early lung allograft function and that reactivity was
mediated by CD4þ T cells and monocytes. That finding
supported the concept that humoral, as well as cell-
mediated, immunity to Col-V is a risk factor for PGD,
and that pre-formed anti-Col-V antibodies have a key role in
this process.14,62 Finally, increases in MCP-1 and CXCL10
in plasma of patients developing PGD, compared with
controls, suggested that IFN-induced pathways resulted in
accumulation of effector T cells in the allograft via
CXCR3.60

Resolution and repair mechanisms

Although identification of the mechanisms of PGD
mechanisms has been informative, translation to clinically
effective therapies has been limited. This has led to
increased interest into uncovering the determinants of
resolution and repair after PGD. Resolution is not simply
a passive process from removal of the initial insult and
exhaustion of early inflammatory cells, but rather an active
process. Resolution of PGD involves cellular and molecular
pathways that involve: (a) removal of apoptotic neutrophils
by macrophages; (b) reabsorption of protein and alveolar
fluid; (c) repair of damaged endothelial and epithelial
barrier; and (d) gradual clearance of extracellular matrix and
fibrosis.

T lymphocytes have been ascribed, as a whole, to
promote IRI,60 but more recent work has shown that a small
fraction of CD4þ T cells, known as regulatory CD4þ T cells
(Tregs), may play an opposite role.63 Identified by the
expression of the master transcription factor forkhead box
protein 3, Tregs promoted the maintenance of immunologic
self-tolerance by suppressing aberrant or excessive immune
responses that are harmful to the host.64,65 That function has
been ascribed to inhibiting antigen-dependent responses,
including experimental studies of immunosuppression-
mediated lung transplant tolerance.66–68 However, Tregs
also have been reported to resolve experimental acute
lung injury by inhibiting macrophage pro-inflammatory
responses through augmenting neutrophil efferocytosis.69

Moreover, they have been shown to limit fibroproliferation
and augment alveolar epithelial repair.70,71 Given their
limited numbers, Tregs have been shown to become highly
proliferative after lung inflammation and are a key feature in
controlling exuberant immune responses.65,72 Ongoing
clinical trials are evaluating the role of Tregs in solid-organ
transplantation.73 Studies by Neujahr et al and Bhorade et al
have shown that a decreased proportion of Foxp3þ cells
among CD4 cells in bronchoalveolar lavage (BAL) can
potentially predict worse lung allograft outcome and help
guide therapeutic immunosuppression in lung transplant
recipients.74,75 However, another group found that lung
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Tregs increased in the setting of acute rejection and declined
in numbers in patients with quiescence of rejection.76

Therefore, the functional role of Tregs in humans with PGD
remains elusive and there is a need to evaluate functional
suppressive assays and rigorously phenotype sub-popula-
tions of Tregs in patients with PGD.

Other studies have suggested additional approaches to
promote the resolution of PGD. Those studies included the
recognition that resolution of tissue inflammation
is a biosynthetically active process dependent on the synthesis
of pro-resolving lipid mediators.77 One such molecule, lipoxin
A4, has been detected in lung transplant recipient BAL and
has known potent inhibitory effects on neutrophil transen-
dothelial migration.78 Another lipid mediator, reslovin E1,
was demonstrated to promote human neutrophil apoptosis and
clearance of neutrophils from inflamed lungs in mice.79

Mesenchymal stem cells (MSCs), multipotent non-hemato-
poietic cells found in bone marrow and fatty tissues, have
well-described immunosuppressive properties and have
shown promise in ameliorating both acute and chronic
pulmonary inflammation.80 Of note, in a recent report,
conditioned media from bone-marrow-derived MSCs has
been shown to induce Treg expansion and inhibit pulmonary
edema in an experimental lung IRI model.81 Promoting
endothelial integrity itself also may be a useful approach in
combating PGD. Sphingosine 1-phosphate (S1P), a biologi-
cally active lipid growth factor that is derived from the cell
membrane lipid component sphingosine, has been shown to
bind to G-protein-coupled receptors that promote endothelial
cell integrity.82 Reports in several lung IRI models, including
a lung transplant-mediated IRI model, showed that FTY720, a
functional analog of S1P, inhibited neutrophil sequestration,
prevented edema and promoted pulmonary function.83,84 In
addition, several pre-clinical studies have aimed at reducing
tissue injury from ischemia and reperfusion by limiting ROS-
mediated tissue injury. For example, allopurinol reduces of
superoxide formation via inhibition of xanthine oxidase.
Calcium channel blockers given to lung donors before organ
procurement reduce lipid peroxidation and endothelial
dysfunction, potentially limiting PGD. Iron chelators also
limit lipid peroxidation and hydroxyl radical formation.
Inhibitors of P-selectin, intracellular adhesion molecule-1
(ICAM-1), C1 esterase, complement receptor 1 with selectin
receptor (sialyl Lewis X), platelet-activating factor (PAF) and
endothelin have shown benefit during lung IRI85–92 and may
have similar effects in PGD. Inhibitors of complement
receptor and PAF showed reductions in PGD in randomized,
controlled trials.93,94 Studies using ex vivo lung perfusion
systems will provide key translational data to facilitate
development of new PGD therapies in the near future.

Conclusions

The last 10 years of investigation into the underlying
mechanisms of PGD have illuminated important and novel
roles for graft-infiltrating cells, graft-resident immune cells
and parenchymal cells. In particular, the use of experimental
PGD models has led to a working paradigm in which
transplant-mediated innate immune signals generated by
graft-resident cells, such as endothelium, epithelium and
alveolar macrophages, trigger the overexuberant infiltration
of monocytes, neutrophils and T cells. The crosstalk
between these cells results in the release of cytokines,
reactive oxygen intermediates and proteolytic enzymes that
break down homeostatic barriers critical for lung graft
function and the priming of adaptive immune responses that
prevent transplant survival. Notably, risk for PGD may not
be just intrinsically related to the graft, but may also be
encoded into the recipient in the form of immune system-
related genetic polymorphisms or pre-existing cellular or
humoral reactivity to pulmonary autoantigens. However, the
development of therapies to combat PGD ultimately may lie
in better understanding of the mechanisms that promote the
resolution of inflammation. Experimental models of acute
lung injury and some clinical studies have suggested that
strategies utilizing Tregs, augmenting efferocytosis or
ameliorating oxidative stress may be potential approaches
to prevent or treat PGD. Although it appears that multiple
pathways trigger and exacerbate PGD, what remains to be
determined is which mechanisms are most important. To
answer this question, it may be more advantageous to
reverse the normal process of mechanistic investigation—
that is, first determining whether observations from PGD
patients can be reproduced in experimental models.
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